
Copyright Ó 1995 Don Yacktman.    All Rights Reserved.

This palette is a collaborative effort and contains work done by 
James Heiser (jheiser@adobe.com) and Don Yacktman 
(Don_Yacktman@byu.edu).    Both of us had played a little bit with 
the example in Chapter 18 of the NEXTSTEP manual 
Development Tools and Techniques.    We each added our own
little twists to the object and palette provided there; James Heiser
added the tick marks (MiscProgressBar class) and the Pie version 
like those seen in Workspace and other NeXT apps 
(MiscProgressPie class), my changes were to support color and a 
few more target/action methods (in the class MiscProgressView, 
which is superclass to both of James' objects).    We have decided 
to combine our code and provide it as a part of the MiscKit.

One major change Don made is to split up the rendering process 
into separate methods.    Why?    Granted this is slightly less 
efficient, it adds a lot of flexibility for subclassing since you can 
choose to keep parts of the rendering while changing or removing
other parts of the rendering process.    By doing this, it is possible 
to insert extra rendering steps in the process, as well.    If the 
rendering were not broken up like this, some of the rendering 
code in MiscProgressView would have to be repeated in the 
MiscProgressBar class, for example.    (Take a look and you'll see 
what I mean; the ticks can be inserted into the rendering chain in 
one of two spots, user selectable.)    In this object, because it is so
simply rendered, you might find this to be a bit of overkill, but it 
provides a very simple illustration of why an object might be 
designed in a particular way; here we are aiming to exploit the 
advantages of OOP, and are willing to sacrifice a little bit of 
performance.    (And you are really only losing a handful of CPU 



cycles, so it's not anything significant to worry about!)

Note that you might never use the MiscProgressView class 
directlyÐthere's no reason that you can't, but the MiscProgressBar
is a superset of the functionality, so there's no need to use the 
MiscProgressViewÐbut it does serve a useful purpose:    it provides
a way for both the MiscProgressBar and the MiscProgressPie to 
inherit shared code, without having to duplicate the code in both 
classes.    Consider it a sort of abstract superclass, if you will¼

You can test out the palette by loading the Test.nib file and 
playing with it in InterfaceBuilder.    It contains several examples 
of each of the objects, with various different settings in place.    
Test.nib was put together by Don.

This palette project was created by using Scott Anguish's 
MiscClockView as a model as far as creating a palette, lib, and 
using a subproj to hold the palettized objects.    Although Don 
created the initial project and one of the objects, he has turned all
control over development to James, who will be considered owner 
and maintainer of this palette and all the objects of which it is 
composed.


